Arch bridge terminology

Label the parts of the bridge using the list of words below

Abutment

Deck

Parapet

Keystone

Span

Voussoirs

Forces in an arch bridge

The load on the top of the **keystone** makes each **voussoir** on the **arch** of the bridge push on (**compress**) the **voussoir** next to it. This happens until the forces reaches the end **abutments** which are built into the ground.

The ground around the **abutments** is squeezed and pushes back (**compresses**) the **abutments**.

The **abutments** push back onto the **voussoirs** which pass the force back along the **arch** to the **keystone** which supports the load.

There's no tension in an arch bridge!
The only force is compression, which the arch dissipates into the abutment.
That's why arch bridges are so strong.

Arch bridge shapes template

Roman bridges

Pont Flavien, St Chamas, France – 1st Century BC

Alcantara Bridge, Spain - 1st Century AD

Pont du Gard, Remoulins, France – 1st Century AD

We Romans figured out how to make a centring, which supported the Arch until we put the keystone in. You can still see Roman arches, viaducts and aquaducts across the world.