

Chapter Ei: Suspension Bridges Hanging Tough

AIMS \& OBJECTIVES

- To show how transferring loads can make a bridge stronger
- To introduce the suspension bridge

CONTEXT

A suspension bridge is a type of bridge in which the deck is hung from main cables on vertical hangers. The suspension bridge was developed by engineers to cross long distances without needing extra piers, such as a beam bridge would require. Although suspension bridges are spectacular and beautiful structures, they are expensive and complex to build.

LANGUAGE OF BRIDGES:

Anchor: acts to secure the bridge to the ground.
Compression: a force that tries to make things shorter or smaller (a squashing, pushing force).

Deck: the main surface of the bridge, the traffic crosses here.

Hanger: the cables that hang the deck from the main cable.

Main cable: the cables that hold up the bridge, anchored at either end and suspended from the towers.

Piers: the upright columns that support the bridge.
Span: the distance between bridge supports.
Tension: a force that tries to make things longer (a stretching, pulling force).
Total span: the full distance, from one side to the other, the bridge covers.

Tower: the main structure that supports the bridge, over which the main cables are suspended, or hanging.

> As a budding civil engineer, you will learn all about how suspension bridges transfer forces really well. This means they can span very long distances compared to other types of bridges.

In the earlier section of this book, the chapter on Loads and Forces includes a series of activities you can use to demonstrate forces and their effects. You can re-visit these to remind learners of loads and forces on the bridge.

When an engineer is designing a bridge, they must first understand how different loads will put forces on the bridge. Then they must find a way to balance them. Where the load is likely to exceed the strength, the bridge will fail.

An example would be when an engineer needs to build a bridge across an estuary which is more than 1 km wide. The water is very deep and is used by large boats to reach a port upstream.

What are the different options for the bridge?

The length of each span in a beam bridge is limited to about 300 m - the addition of extra spans requires more piers. These would be challenging to build and obstruct the shipping lanes.

An arch bridge has a maximum span of about 500 m - the same issue as a beam bridge then arises, with the need for more piers etc.

1 Create a K'Nex bridge span using the full six deck plates:

This isn't in the instruction book, so it needs to be created using:

- 6 green deck plates,
- 10 yellow half cog pieces
- 19 blue rods
- 8 grey half cogs fitted together at right angles

Then add two upright sections, one at each end

- 4 yellow rods
- 4 red right angled cogs
- 2 blue rods

Tie two 70 cm lengths of string on each side of the middle of the bridge.

Place this K'Nex bridge across the 40 cm gap created by the books/desks.

While wearing safety glasses, add the small masses until the bridge collapses. This demonstrates the maximum load the bridge can support.

Remove the maximum load from the bridge. Bring one length of string over the upright on the right side of the bridge, and bring the other length over the upright on the left. Using some more of the small masses, weigh down the strings on either end of the bridge. Now return the original maximum load to the centre of the bridge. What do you notice?

Can you add extra load to the centre of the bridge to see how much greater the load now needs to be to collapse the bridge? Why does this happen?

To give a simple demonstration explaining why the towers on a suspension bridge need to be anchored, you need two large books, some string and drawing pins.

Tie string around two large books, so a 20 cm
(minimum) length of string acts as a bridge between the books when they are stood on end

Instead of tying the string around the books, fasten the ends of the string using the drawing pins, and rest the string on the top of the books:

Push down gently on to the middle of the string. What do you notice?

Again, push down on the centre of the string. What do you notice?

When the string is fastened, or anchored, the load in the centre of the bridge is re-distributed to the anchors.

Search the internet for "PBS learning media Clifton Suspension Bridge" for a short video explaining how the forces in a suspension bridge work.

You could use the forces in a suspension bridge handout to help visualise the forces.

HUMAN SUSPENSION BRIDGE

This activity requires 12 children
It is important that no-one pulls too hard on the ropes, as this could hurt the children acting as towers or could pull someone over.

1. Select four of the taller children and get one pair to stand facing the other, they should be roughly 2 m apart. These children represent the two towers of the suspension bridge.
2. Place the rope across the shoulders of each pair (using the cushioning material underneath) - this represents the main cable.
3. Select four more children to act as anchors, getting each one to sit on the floor facing the back of each tower. They should each hold the end of the main cable. Remind them not to pull on the rope!
4. Select four more children to act as the hangers. They should kneel or sit on the floor, facing each other and holding on to the main cable. They represent the parts holding on to the deck of the bridge (the floor).
5. The four hangers can now pull gently on the main cable. They should feel the tension pulling on their arms. The towers should feel the compression pushing down on their shoulders, and the anchors should feel the tension in the main cable pulling against their arms.
6. Ask the learners to notice that all the parts have to balance the forces for the bridge to stay up and be stable (even without pulling hard).
7. You could invite the children to consider what would happen if there were no anchors, or to consider what might happen if the hangers failed? They might appreciate that a suspension bridge has lots more parts than most other types of bridge. This makes them complicated and expensive to build.

If there are additional participants in the group, ask them to act as cars and move through the centre of the suspension bridge (carefully!), between the two lines of children, remaining on the floor/deck of the bridge. Ask the learners to imagine how the forces in their parts of the bridge would change as this live load travels across.

TRY MAKING A ROPE BRIDGE

Using two clamp stands, clamps and bosses, fix the clamps at right angles to the clamp stand upright pole. Ensure both are at the same height. Set the stands $20-25 \mathrm{~cm}$ apart.

Take the other two doublethickness lengths and tie them between clamps so they're horizontal and parallel to the first piece. Again, make sure they are tight.

Take a string and tie it to one of top double strings. Tie the middle of it to the bottom one and then tie the other end to the opposite top string. Repeat this for all the strings. The challenge here is to ensure all the strings remain as tight as possible. There is an excess of string in the lengths to help make it easier to tie them - the extra string can be cut off when the length is knotted in position.

Test the bridge with your objects.

Rope doesn't seem like a strong material, and it isn't rigid so it will move when in use, but it is lightweight, easy to make and transport, and easily replaced if needed. How could the rope bridge be improved?

You can explore using more coloured threads, or changing how many knots you tie with each strand. You could also try a completely different method, described here: Card wheel method for making friendship bracelets handout.

Take a look at the Famous suspension bridges handout. Can you discover where these bridges are in the world, and why they might have needed to be built?

The Akashi Kaikyo Bridge, also known as the Pearl Bridge, has the longest main span of any bridge in the world. It was finished in 1998. It links the city of Kobe on the mainland of Japan to Awaji Island.

Before the Pearl Bridge was built, ferries carried passengers across the Akashi Strait in Japan. This dangerous waterway often experienced severe storms and, in 1955, two ferries sank in the strait during a storm, killing 168 people, most of them children. The resulting shock and public outrage convinced the Japanese government to develop plans for a suspension bridge to cross the strait.

